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Abstract 

For hadron storage rings like the Relativistic Heavy Ion 
Collider (RHIC) and the Large Hadron Collider (LHC), the 
machine performance at collision is usually limited by the 
field quality of the interaction region (IR) magnets. A ro- 
bust local correction for the IR region is valuable in im- 
proving the dynamic aperture with practically achievable 
magnet field quality. We present in this paper the action- 
angle kick minimization principle on which the local IR 
correction for both RHIC and the LHC are based. 

1 INTRODUCTION 

For hadron storage rings like the Relativistic Heavy Ion 
Collider (RHIC) [l] and the Large Hadron Collider (LHC) 
[2], the beam size is the largest near the interaction region 
(IR) triplets during low-p* operation. Furthermore, beam- 
beam effects often require a finite crossing angle, resulting 
in significant closed orbit deviation from the magnet cen- 
ters. Machine performance at collision energy, measured in 
terms of the dynamic aperture, thus depends on achieving 
the highest possible magnetic field quality and alignment 
accuracy in the IR magnets. 

Magnetic multipole correctors located in the IR region 
provide active means to compensate the impact of the IR 
magnetic errors. For hadron machines like RHIC and the 
LHC, the betatron phase advance across each IR triplet 
is negligible, and the betatron phase advance between the 
two IR triplet around each Interaction Point (IP) is near 
180’. With these well-defined phase relations, IR-by-IR 
local correction can be effective and robust. 

In this paper, we discuss the principle of action-angle 
kick minimization for IR local correction. Based on this 
principle, we have designed and implemented multi-layer 
multipole corrector packages in the RHIC IR region [3] 
correcting multipole errors up to the 12thpole order. Simi- 
lar correction schemes have been proposed for the LHC IR 
regions [4,5,6]. In Section 2, we review the Hamiltonian 
describing the particle motion under the magnetic multi- 
pole environment. In Section 3, we discuss the figures of 
merit for global and local error compensation. Discussions 
and summaries are given in Section 4. 

* Work performed under the auspices of the US Department of Energy. 
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2 HAMILTONIAN 

Under the assumption that the effect of the longitudinal 
magnetic field is insignificant [7], and that the transverse 
amplitude of particle motion is small compared with the 
average bending radius, the magnetic field in a magnet can 
be expressed in terms of a 2-dimensional multipole expan- 
sion 

co 
By + iB, = Bo x(b, + ia,)(c + iy)“ml (1) 

tZ=l 

where z and y indicate the horizontal and vertical direc- 
tions, respectively, BO is the nominal bending field, and 
n = 1 is dipole term, n = 2 is quadrupole term, etc. The 
Hamiltonian of the charged particle with s as the indepen- 
dent variable is approximately [8] 

where p is the local radius of curvature, A is given by 

B=VxA, (3) 

with 

A, = ,(A-2) (l+ ;) 

= - 

where the coefficients c,, are given by 

1 (-_)“‘2b,+n, n even 

Cmn =- 
m+n 

(-)(n+1)‘2%+n n odd 
(5) 

In Eq. 5, the coefficients cm,, are deduced from the recur- 
sive equation [8] 

(m -t 2)(m + l)p2 em+2+ + (n + 2)(n + l)p2e,,,+2 

+Cm + l)Pm + lbem+l,n + 2(n + 2)(n + l)pe,-r++s 
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with initial conditions B60 = $+b7A, - a7A, 

el, = eon = 0. (7) Bs1 = --a6 - 6(a7A, + b7A,) 

We introduce a canonical transformation using the generat- 
ing function 

where b = &/PO, pot = Bc~c is the rigidity of the 
heam, and pe is the nominal bending radius. The disper- 
sion functions D, and D,, and the closed-orbit displace- 
ments zc and ye are determined by eliminating the terms 
in the Hamiltonian that are linear in zp and yp. The new 
Hamiltoninn is expressed in terms of the Matron displace- 
ments x,g and yp as 

B42 = -15Bso 

B33 = -2OBsr 

B24 = l5B6O 

B15 = 851 

Bos = _B60 

B70 = + + bsAt - asAy 

B61 = -a7 - 7asAz - 7bsA, 

B52 = -21B70 

B43 = -5B6I 

B34 = 35B70 

1 
B25 = 3B6l 

+po (820~; + B11+p~p + BOZY;+ Bl6 = -7B70 

Bo7 = 

+B&& + B21z;yp + Bl2zpy; + Bo3$ + * - *) . 
-Bs1/7 

(9) 
Retaining term that are linear in the closed orbit displace- 
ments AZ = D,d+x, and Ay = DyS+yc, the coefficients 
Bij HIT given by [9] 

Bo2 = -; (AC2 - bd) - bsAz + asA, 

BII = -as - 2(asAz + bsAy) (10) 

B20 = -Boz + ;;lr (Abl - b16) 

B30 = 

B21 = 

812 = 

803 = 

$ + b4Az - a4A, 

-3as - 3a4Az - 3b4A, 

-3B30 

-Bz1/3 

840 = 

B31 = 

B22 = 

B13 = 

B04 = 

+b5AZ- asAy 

-a4 - 4(asA, + bsAy) 

-6840 

-B31 

B40 

Bso = + + b6AZ - agAy 

B41 = -05 - 5a6Az - 6b6AY 

B32 = -1OB5e 

B23 = -2841 

B14 = -5B50 

Bos = B41/5 

‘P 

(11) 

(12) 

(13) 

&-so = ;+bsA,- asAy 

B71 = -a8 - Sash, - 8bsAy 

B62 = -28BSo 

B53 = -7B71 

B44 = 70BSO 

B35 = 7B71 

B26 = -28Bso 

B17 = -B71 

Bos = Bso 

ho = 

B81 = 

B72 = 

B63 = 

B54 = 

B45 = 

B36 = 

B27 = 

BIS = 

Bos = 

3 + ho& - alo&, 

-ag - QaleA= - 9bmAy 

-36890 

-2SBs1/3 

126Bge 

14B8l 

-84Bgo 

-4B8l 

QBgo 

Bcu/Q 

(14) 

(15) 

(16) 

(17) 
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&o,o 

&l 

B82 

&3 

= $ + bllA., - allA, 

B64 

B55 

B46 

B37 

B28 

Big 

= -alo - lOanA, - l@nAy 

= -45B10,o 

= -12Bg1 

= 2lOB1c,o 

= 126Bgl/5 

= -2lOB10,o 

= -12Bgl 

= 45B10,o 

= B31 

BOJO = -&o,o 

where A& and Ab3 are the deviation from the design 
dipole 81 and quadrupole 63 fields. Regarding the mul- 
tipole errors as a perturbation, the Hamiltonian given by 
E!q. 9 can be further rewritten in terms of the action-angle 

variables (&, J,, &, Jr,) as 

using the relations 

2=&&08X, p,=- +x. +ascosx~) 

wherez=x,y,and 

The action J, can be written as 

difficult to implement during machine operation. Local IR- 
by-IR compensation employing multi-layer multipole cor- 
rectors located in the corresponding IR quadrupole triplet 
region can’provide effective correction. 

3.1 Tune spread 

The tune spread is usually defined as the spread of the tune 
shift of particles with various betatron amplitudes and mo- 
mentum deviation. To the first order of the multipole er- 
rors, the tune shifts can be obtained by [9] averaging the 
time derivatives of & and & while keeping only the Aen 
term from the expansion, 

where z = x, y, the sign ( ) denotes average over the phase 
variable, and the integral is performed over the circumfer- 
ence of the closed orbit. Retaining multipole terms up to 
1 lth order (n = 11) and closed orbit terms (A,, Ay) to the 
first order, the linear horizontal tune shift is 

Jz = $g [z2 + (w+Pz~z)~] . (22) 
v, = 

co 

Here, v,c and vyc are the unperturbed tunes, 27rR0 is the 
ring circumference, Oz,y and &, are the Courant-Snyder 
lattice functions, and AI, represents the error terms which 
can be deduced from Eq. 9. 

3 FIGUFCESOFMERIT 

Conventionally, spread of betatron tunes has been used to 
guide the design of storage rings. Minimization of the tuue 
spread is often used for global error compensation. Since 
skew multipoles and odd, normal multipoles do not con- 
tribute to the linear tune shift, an extension of such global 
method is the minimization of nonlinear components of the 
one-turn map. 

The global compensation approaches are valuable for 
resonance correction as well as dynamic aperture improve 
ment. However, in ‘the case that dominant errors are lo- 
cahzed in specific places like the inter&ion region, global 
multipole compensation is less robust and often practically 
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The linear vertical tune shift is 

-FC.& J, 
1 

where the coefficients are 

- b26 
Co = Abs2 + bsALZ - aaAy 

ci = : + b5At - asAy 

(25) 

be 
C’s = - +b.;rA= - aTA, 

6 

c3 = !$ + 69 A, - aaAy 

c4 = $ + brlA, - allA,. 

(26) 

3.2 Action-angle kick 

The figures of merit for local minimization are the action- 
angle kicks produced by the IR magnets at each specified 
multipole order. ‘Ihe action kicks can be expressed as 

AJz = 
aH 

Co 

- ds% = - I,m=_m ilA Jim c 

- ds= 
J 

Co 

&sy = -, m=_-oo imAJh c 

(27) 

where 

-CW 
The correction scheme is simplified by the fact that the ac- 
tion is approximately a constant of motion at the time scale 
of the revolution period, and that tire relative betatron phase 
is well defined within the high-p IR region. Minimization 
is performed on every significant multipoleerror 6, (or a,). 
Since the available physical space is usually limited in the 

high-p region, corrector packages containing multi-layer 
corrector elements of various multipole content are used. 
For each multipole order cn (either a,, or b, ), (a minimum 
of) two correction elements are implemented for every IR, 
each located at symmetric locations around the II? Due to 
the anti-symmetry of the IR optics, one of the two elements 
is near the maximum 0, location, and the other is near the 
maximum & location, resulting in an effective compensa- 
tion. The strengths of these correction elements are deter- 
mined by minimizing the two quantities 

/ 
ds Cz cn + (-)” 

J 
dsCzcn, z=x,y (29) 

L R 

taking advantage of the negligible betatron phase advance 
within each triplet, and approximate 180’ phase advance 
between the triplets. ‘Ihe integral is over the entire left- 
hand-side (L) or right-hand-side (R) triplet. In general, the 
weights C, in Eq. 29 are chosen according to the multi- 
poles as: 

Et2 for b, 

c, = 

/I!“- 1”,2&‘2 for an 

and 

42 
&I for even b, or odd a, 

c, = 
&l2&- 1)‘2 for odd b, or even a,, 

4 DISCUSSIONS AND SUMMARY 

Compared with the tune shift, the action (and angle) 

(30) 

(31) 

kick 
has similar dependence on the lattice optics /3* for each 
multipole. Consequently, minimization of action-angle 
kicks results in a reduction of tune spread and an improve- 
ment of the dynamic aperture. The compensation scheme 
is usually not sensitive to the change of p*, as long as p* 
is low at the IP (usually the only relevant case) so that 0 at 
a distance s from the IP satisfies the relation /3p’ Z s2. 
In the case of two beams sharing the same IR magnets, 
the compensation is equally effective for both intersecting 
beams, since the optics of the interaction region is anti- 
symmetric. Although closed-orbit deviation (e.g. due to 
finite crossing angle) is not taken into account, the correc- 
tion is usually effective since the effect of the magnet feed- 
down is partially compensated by the feed-down from the 
correctors. 

The most straightforward approach for local correction 
on multipoles of n = 3 and higher order is the dead- 
reckoning method, setting the corrector strength according 
to Eq. 29 using bench-measured magnetic multipole errors. 
Up to 10% ofmeasurement errors and quench/thermal cy- 
cle dependent multipole variations can usually be tolerated 
[3,5,6]. The method is also immune to moderate closed- 
orbit errors and corrector misalignments [6]. 

Multipole errors of order n = 1,2 produce closed orbit 
deviation, tune perturbation, and coupling. The effects are 
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usually compensated using beam-based tuning. In the case 
that skew quadrupole components and quadrupole mis- 
alignment of the IR triplets is significant, local decoupling 
utilizing the a2 corrector in the IR can be effective [lo]. 
The corrector strength obtained from the local decoupling 
scheme is similar to those given by Bq. 29. Beam-based 
corrections for higher order multipoles have also been pur- 
sued by several authors recently [ 11, 121. 
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